Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
Int. j. morphol ; 41(6): 1712-1719, dic. 2023.
Artigo em Inglês | LILACS | ID: biblio-1528776

RESUMO

SUMMARY: This study is to investigate the effect of survivin down-regulation by Egr1-survivin shRNA combined with radiotherapy on the apoptosis and radiosensitivity of esophageal squamous cell carcinoma ECA109 and KYSE150 cells. ECA109 and KYSE150 cells were transfected with Egr1-survivin shRNA, and then treated with radiotherapy. After 24 h, the mRNA and protein levels of Egr1-survivin were detected by qPCR and Western-Blot. Cell cycle and apoptosis were detected by flow cytometry. Western blot also detected levels of cleavaged Caspase 3 and Caspase 9. YM155 was used as a positive control to inhibit survivin expression. The levels of survivin mRNA and protein in ECA109 and KYSE150 cells treated with Egr1-survivin shRNA combined with radiotherapy were significantly lower than those of the blank control group, the empty vector control group, and, the YM155 + radiotherapy group (P<0.05). Meanwhile, after survivin down-regulation, the ratio of G2 to S phase of ECA109 and KYSE150 cells increased significantly, leading to significant G2 and S phase arrest. Additionally, apoptosis of ECA109 and KYSE150 cells increased significantly (P <0.01). Further, protein levels of cleavaged Caspase 3 and Caspase 9 significantly increased in Egr1-survivin shRNA combined with radiotherapy group. Egr1-survivin shRNA combined with radiotherapy can down-regulate survivin expression, which further increases the apoptosis, and enhances the radiosensitivity of ECA109 and KYSE150 cells.


Este estudio tuvo como objetivo investigar el efecto de la regulación negativa de survivina por el shRNA de Egr1-survivina combinado con radioterapia sobre la apoptosis y la radiosensibilidad del carcinoma de células escamosas de esófago Células ECA109 y KYSE150. Las células ECA109 y KYSE150 se transfectaron con shRNA de survivina Egr1 y luego se trataron con radioterapia. Después de 24 h, los niveles de ARNm y proteína de Egr1-survivina se detectaron mediante qPCR y Western-Blot. El ciclo celular y la apoptosis se detectaron mediante citometría de flujo. La transferencia Western también detectó niveles de Caspasa 3 y Caspasa 9 escindidas. Se usó YM155 como control positivo para inhibir la expresión de survivina. Los niveles de ARNm y proteína de survivina en células ECA109 y KYSE150 tratadas con shRNA de survivina Egr1 combinado con radioterapia fueron significativamente más bajos que los del grupo control en blanco, el grupo control de vector vacío y el grupo de radioterapia YM155 + (P <0,05). Mientras tanto, después de la regulación negativa de survivina, la proporción entre las fases G2 y S de las células ECA109 y KYSE150 aumentó significativamente, lo que llevó a una detención significativa de las fases G2 y S. Además, la apoptosis de las células ECA109 y KYSE150 aumentó significativamente (P <0,01). Además, los niveles de proteína de Caspasa 3 y Caspasa 9 escindidas aumentaron significativamente en el shRNA de Egr1- survivina combinado con el grupo de radioterapia. El shRNA de survivina de Egr1 combinado con radioterapia puede regular negativamente la expresión de survivina, lo que aumenta aún más la apoptosis y mejora la radiosensibilidad de las células ECA109 y KYSE150.


Assuntos
Humanos , Neoplasias Esofágicas/terapia , Survivina , Carcinoma de Células Escamosas do Esôfago/terapia , Radiossensibilizantes , Tolerância a Radiação , RNA Mensageiro , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Transfecção , Regulação para Baixo , Western Blotting , Apoptose , Terapia Combinada , RNA Interferente Pequeno , Linhagem Celular Tumoral/efeitos da radiação , Proteína 1 de Resposta de Crescimento Precoce , Caspase 3 , Caspase 9 , Reação em Cadeia da Polimerase em Tempo Real , Citometria de Fluxo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia
2.
Pigment Cell Melanoma Res ; 36(5): 365-377, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37341054

RESUMO

An increasing number of cancer subtypes are treated with front-line immunotherapy. However, approaches to overcome primary and acquired resistance remain limited. Preclinical mouse models are often used to investigate resistance mechanisms, novel drug combinations, and delivery methods; yet most of these models lack the genetic diversity and mutational patterns observed in human tumors. Here we describe a series of 13 C57BL/6J melanoma cell lines to address this gap in the field. The Ohio State University-Moffitt Melanoma Exposed to Radiation (OSUMMER) cell lines are derived from mice expressing endogenous, melanocyte-specific, and clinically relevant Nras driver mutations (Q61R, Q61K, or Q61L). Exposure of these animals to a single, non-burning dose of ultraviolet B accelerates the onset of spontaneous melanomas with mutational patterns akin to human disease. Furthermore, in vivo irradiation selects against potent tumor antigens, which could prevent the outgrowth of syngeneic cell transfers. Each OSUMMER cell line possesses distinct in vitro growth properties, trametinib sensitivity, mutational signatures, and predicted antigenicity. Analysis of OSUMMER allografts shows a correlation between strong, predicted antigenicity and poor tumor outgrowth. These data suggest that the OSUMMER lines will be a valuable tool for modeling the heterogeneous responses of human melanomas to targeted and immune-based therapies.


Assuntos
Linhagem Celular Tumoral , Melanoma , Animais , Camundongos , Linhagem Celular Tumoral/efeitos da radiação , GTP Fosfo-Hidrolases/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética
3.
Bull Exp Biol Med ; 174(4): 489-496, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36899199

RESUMO

We explored the mechanism by which miR-139 modulates radioresistance of esophageal cancer (EC). The radioresistant cell line KYSE150R was obtained from the parental KYSE150 cell line by fractionated irradiation (15×2 Gy; total dose of 30 Gy). The cell cycle was assessed by flow cytometry. A gene profiling study was conducted to detect the expression of genes related to the radioresistance of EC. In the KYSE150R line, flow cytometry revealed increased number of G1-phase cells and decreased number of G2-phase cells; the expression of miR-139 increased. Knockdown of miR-139 decreased radioresistance and changed the distribution of cell cycle phases in KYSE150R cells. Western blotting showed that miR-139 knockdown increased the expression levels of cyclin D1, p-AKT, and PDK1. However, PDK1 inhibitor GSK2334470 reversed this effect for p-AKT and cyclin D1 expression. A luciferase reporter assay indicated that miR-139 directly bound to the PDK1 mRNA 3'-UTR. Analysis of the clinical data from 110 patients with EC showed an association of miR-139 expression with the TNM stage and the effect of therapy. MiR-139 expression significantly correlated with EC and progression-free survival. In conclusion, miR-139 enhances the radiosensitivity of EC by regulating the cell cycle through the PDK1/Akt/Cyclin D1 signaling pathway.


Assuntos
Neoplasias Esofágicas , MicroRNAs , Tolerância a Radiação , Humanos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Linhagem Celular Tumoral/efeitos da radiação , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tolerância a Radiação/genética , Transdução de Sinais/genética
4.
Nucl Med Biol ; 116-117: 108312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36621256

RESUMO

INTRODUCTION: Radioligand therapy (RLT) is an expanding field that has shown great potential in the fight against cancer. Radionuclides that can be carried by selective ligands such as antibodies, peptides, and small molecules targeting cancerous cells have demonstrated a clear improvement in the move towards precision medicine. Poly (ADP-ribose) polymerase (PARP) is a family of enzymes involved in DNA damage repair signalling pathway, with PARP inhibitors olaparib, talazoparib, niraparib, veliparib, and rucaparib having FDA approval for cancer therapy in routine clinical use. Based on our previous work with the radiolabelled PARP inhibitor [18F]rucaparib, we replaced the fluorine-18 moiety, used for PET imaging, with iodine-123, a radionuclide used for SPECT imaging and Auger electron therapy, resulting in 8-[123I]iodo-5-(4-((methylamino)methyl)phenyl)-2,3,4,6-tetrahydro-1H-azepino[5,4,3-cd]indol-1-one, ([123I]GD1), as a potential radiopharmaceutical for RLT. METHODS: [123I]GD1 was synthesized via copper-mediated radioiodination from a selected boronic esters precursor. In vitro uptake, retention, blocking, and effects on clonogenic survival with [123I]GD1 treatment were tested in a panel of cancer cell lines. Enzymatic inhibition of PARP by GD1 was also tested in a cell-free system. The biodistribution of [123I]GD1 was investigated by SPECT/CT in mice following intravenous administration. RESULTS: Cell-free enzymatic inhibition and in vitro blocking experiments confirmed a modest ability of GD1 to inhibit PARP-1, IC50 = 239 nM. In vitro uptake of [123I]GD1 in different cell lines was dose dependent, and radiolabelled compound was retained in cells for >2 h. Significantly reduced clonogenic survival was observed in vitro after exposure of cells for 1 h with as low as 50 kBq of [123I]GD1. The biodistribution of [123I]GD1 was further characterized in vivo showing both renal and hepatobiliary clearance pathways with a biphasic blood clearance. CONCLUSION: We present the development of a new theragnostic agent based on the rucaparib scaffold and its evaluation in in vitro and in vivo models. The data reported show that [123I]GD1 may have potential to be used as a theragnostic agent.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Camundongos , Elétrons , Radioisótopos do Iodo/uso terapêutico , Neoplasias/radioterapia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Distribuição Tecidual , Indóis/química , Indóis/farmacologia , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/efeitos da radiação
5.
Cancer Lett ; 541: 215746, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35594995

RESUMO

Radiation therapy is effective in achieving local control in esophageal squamous cell carcinoma; however, changes in the tumor microenvironment induced by radiation can also promote metastasis. Dying tumor cells play vital roles in promoting the survival of living tumor cells; however, few studies have investigated the effects of dying tumor cells on the tumor microenvironment. Since myeloid-derived suppressor cells (MDSCs) and macrophages constitute the pre-metastatic niche (PMN), we used a 4-nitroquinoline-1-oxide induced in situ tumor model to investigate the effects of irradiation on MDSCs and macrophages in esophageal squamous cell carcinoma (ESCC). When primary tumor sites were irradiated, we observed an increase in MDSCs in the spleen and the deposition of PMN components in lung and liver. Enhanced MDSC accumulation and function were induced by small extracellular vesicles (sEVs) isolated from irradiated tumor-bearing mice. The MDSC induction function of sEVs after irradiation was reaffirmed using sEVs derived from ESCC cell lines. The irradiation-induced upregulation of miR-26b-5p in sEVs enhanced MDSC expansion and activation by targeting phosphatase and tensin homolog. Our results first elucidated a mechanism by which dying tumor cells enhanced the deposition of PMN components and potentiated MDSCs in ESCC after irradiation. sEVs played a vital role in mediating signals between the primary tumor and the microenvironment to form a metastasis-promoting microenvironment after irradiation. Furthermore, miR-26b-5p or PI3K/AKT signaling pathway inhibitors should be evaluated in clinical trials in combination with radiotherapy as a strategy to improve outcomes.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Vesículas Extracelulares , MicroRNAs , Microambiente Tumoral , Animais , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/efeitos da radiação , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/radioterapia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/radioterapia , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Microambiente Tumoral/fisiologia , Microambiente Tumoral/efeitos da radiação
6.
Cells ; 11(8)2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35456021

RESUMO

Transglutaminase 2 (TG2) is a protein expressed in many tissues that exerts numerous, sometimes contradictory, intra- and extracellular functions, under both physiological and pathophysiological conditions. In the context of tumor progression, it has been found to be involved in cell adhesion, DNA repair mechanisms, induction of apoptosis, and mesenchymal transdifferentiation, among others. Here, we hypothesized that TG2 also contributes to the radioresistance of two human melanoma cell lines, A375 and MeWo, which can be seen to differ in their basal TG2 biosynthesis by examining their proliferation and clonal expansion after irradiation. For this purpose, cellular TG2 biosynthesis and TG2 activity were modulated by transfection-induced overexpression or TG2 knock-out and application of TG2-selective inhibitors. Proliferation and clonal expansion of TG2-overexpressing cells was not enhanced over wildtype cells, suggesting that increased TG2 biosynthesis does not further enhance the radioresistance of melanoma cells. Conversely, TG2 knock-out in A375 cells reduced their proliferation, as well as clonal and spheroidal expansion after irradiation, which indicates a contribution of TG2 to the radioresistance of melanoma cells. Since TG1, TG3, and partly also, TG6 biosynthesis was detectable in A375 and MeWo cells, it can be assumed that these other members of the TG family may exert a partially compensatory effect.


Assuntos
Melanoma , Tolerância a Radiação , Adesão Celular , Linhagem Celular Tumoral/efeitos da radiação , Humanos , Melanoma/genética , Melanoma/radioterapia , Proteína 2 Glutamina gama-Glutamiltransferase
7.
Adv Clin Exp Med ; 31(6): 671-687, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35275451

RESUMO

BACKGROUND: Radiotherapy is the main treatment for nasopharyngeal carcinoma. The radioresistance mechanism of cells is related to miRNAs. OBJECTIVES: To investigate the miRNA profiling of HONE1 and CNE2 after X-ray therapy. MATERIAL AND METHODS: The HONE1 and CNE2 cells were treated with X-ray at 4 Gy, 8 Gy, 16 Gy, and 20 Gy doses. The cell lines CNE2 with the best therapy effects and HONE1 with the worst therapy effects were screened out. Apoptosis and cell viability were detected with flow cytometry and Cell Counting Kit-8 (CCK-8). High-throughput sequencing was performed. A miRNA library was constructed. The miRNA annotation expression distribution, family prediction and target gene interaction, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted. RESULTS: The 24-hour 20 Gy dose X-rays were selected as the optimal therapy conditions. The CNE2_C, CNE2_M, HONE1_C and HONE1_M miRNAs accounted for 26.5%, 31.7%, 21.3%, and 22.9% of the Cleandata reads count, respectively, and the contents of rRNAs accounted for 24.9%, 14.7%, 25.1%, and 25.1% of the Cleandata reads count, respectively. The miRNAs with differential expression between the HONE1 and CNE2 cell lines including hsa-miR-21-5p, hsa-let-7a-5p, hsa-miR-125a-5p, hsa-miR-26a-5p, hsa-let-7f-5p, hsa-miR-20a-5p, and hsa-miR-24a-3p. There were also differentially expressed miRNAs in HONE1_C vs. HONE1_M, such as hsa-miR-21-5p and hsa-let-7i-5p. The differentially expressed miRNA in CNE2_C vs. CNE2_M was hsa-miR-148b-3p. The Gene Ontology analysis showed that the differentially expressed miRNA interacting genes in HONE1_M vs. CNE2_M were mainly enriched in biological process such as negative and positive regulation of transcription from RNA polymerase II promoter, cellular component such as cytosol and molecular function such as protein binding factor. The KEGG pathway analysis revealed that the differentially expressed miRNA interacting genes in HONE1_M vs. CNE2_M were enriched in the cancer-related pathways, such as pathways in cancer, MAPK signaling pathway and Wnt signaling pathway. CONCLUSIONS: Twelve miRNAs and 9 genes which contribute to X-ray radiation resistance were identified. Among those with differential expression between the HONE1 and CNE2 cell lines, which played a regulatory role in multiple pathways, were hsa-miR-20a-5p, hsa-let-7a-5p, hsa-let-7f5p, hsa-let-7i-5p, hsa-miR-30e-5p, hsa-miR-148b-3p, and hsa-miR-200c-3p. The corresponding genes were MAPK1, SOS1, TGFBR1, TGFBR2, TP53, CASP3, CCNE2, PTEN, and CDK2.


Assuntos
Linhagem Celular Tumoral , MicroRNAs , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/efeitos da radiação , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia
8.
Int J Oncol ; 60(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35191520

RESUMO

The high recurrence rate of lung cancer is a major clinical challenge associated with therapy­resistant cancer stem cells (CSCs), which are rare subpopulations. Future successful treatment is required to also eradicate these subpopulations. Furthermore, the majority of anti­cancer treatments are being tested in adherent monolayer cultures with the limitations this entails in the translation of results into clinical practice. The present study aimed to establish and characterize patient­derived long­term primary lung cancer tumorspheres enriched in CSCs and evaluate the effects of Auger electrons on them. These electrons are emitted from radionuclides that decay by electron capture or internal conversion and have demonstrated promising therapeutic potential. Their low energy (<1 keV) is sufficiently potent to induce DNA double­strand breaks and eventually cell death while minimizing irradiation of non­targeted surrounding cells. Labeling a thymidine analog (deoxyuridine) with the Auger electron­emitting radionuclide [125I], which is exclusively incorporated into the DNA of proliferating cells during the S­phase, ensures a close distance to the DNA. Primary cell cultures grown as tumorspheres were established and characterized. The tumorspheres were morphologically distinct and differed concerning their proliferation rate and fraction of CSCs. Surface markers associated with CSCs were upregulated and 5­[125I]iodo­2'­deoxyuridine was incorporated in the tumorspheres. The Auger electrons induced DNA double­strand breaks, G2/M arrest and apoptosis in the tumorspheres; however, the tumorspheres derived from different patients exhibited heterogeneities in their sensitivity to Auger electron irradiation.


Assuntos
Linhagem Celular Tumoral/efeitos da radiação , Neoplasias Pulmonares/radioterapia , Radioterapia/métodos , Idoso , Idoso de 80 Anos ou mais , DNA/efeitos da radiação , Feminino , Humanos , Neoplasias Pulmonares/fisiopatologia , Masculino , Pessoa de Meia-Idade , Doses de Radiação
9.
Sci Rep ; 12(1): 1056, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058559

RESUMO

Cancer stem-like cells (CSCs) within solid tumors exhibit radioresistance, leading to recurrence and distant metastasis after radiotherapy. To experimentally study the characteristics of CSCs, radioresistant cell lines were successfully established using fractionated X-ray irradiation. The fundamental characteristics of CSCs in vitro have been previously reported; however, the relationship between CSC and acquired radioresistance remains uncertain. To efficiently study this relationship, we performed both in vitro experiments and theoretical analysis using a cell-killing model. Four types of human oral squamous carcinoma cell lines, non-radioresistant cell lines (SAS and HSC2), and radioresistant cell lines (SAS-R and HSC2-R), were used to measure the surviving fraction after single-dose irradiation, split-dose irradiation, and multi-fractionated irradiation. The SAS-R and HSC2-R cell lines were more positive for one of the CSC marker aldehyde dehydrogenase activity than the corresponding non-radioresistant cell lines. The theoretical model analysis showed that changes in both the experimental-based ALDH (+) fractions and DNA repair efficiency of ALDH (-) fractions (i.e., sub-lethal damage repair) are required to reproduce the measured cell survival data of non-radioresistant and radioresistant cell lines. These results suggest that the enhanced cell recovery in SAS-R and HSC2-R is important when predicting tumor control probability in radiotherapy to require a long dose-delivery time; in other words, intensity-modulated radiation therapy is ideal. This work provides a precise understanding of the mechanism of radioresistance, which is induced after irradiation of cancer cells.


Assuntos
Reparo do DNA , Células-Tronco Neoplásicas/efeitos da radiação , Tolerância a Radiação , Aldeído Desidrogenase/metabolismo , Linhagem Celular Tumoral/efeitos da radiação , Sobrevivência Celular , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Raios X
10.
Clin Epigenetics ; 13(1): 212, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852845

RESUMO

BACKGROUND: Although radiation therapy represents a core cancer treatment modality, its efficacy is hampered by radioresistance. The effect of ionizing radiations (IRs) is well known regarding their ability to induce genetic alterations; however, their impact on the epigenome landscape in cancer, notably at the CpG dinucleotide resolution, remains to be further deciphered. In addition, no evidence is available regarding the effect of IRs on the DNA methylome profile according to the methionine dependency phenotype, which represents a hallmark of metabolic adaptation in cancer. METHODS: We used a case-control study design with a fractionated irradiation regimen on four cancerous cell lines representative of HCC (HepG2), melanoma (MeWo and MeWo-LC1, which exhibit opposed methionine dependency phenotypes), and glioblastoma (U251). We performed high-resolution genome-wide DNA methylome profiling using the MethylationEPIC BeadChip on baseline conditions, irradiated cell lines (cumulative dose of 10 Gy), and non-irradiated counterparts. We performed epigenome-wide association studies to assess the effect of IRs and methionine-dependency-oriented analysis by carrying out epigenome-wide conditional logistic regression. We looked for epigenome signatures at the locus and single-probe (CpG dinucleotide) levels and through enrichment analyses of gene ontologies (GO). The EpiMet project was registered under the ID#AAP-BMS_003_211. RESULTS: EWASs revealed shared GO annotation pathways associated with increased methylation signatures for several biological processes in response to IRs, including blood circulation, plasma membrane-bounded cell projection organization, cell projection organization, multicellular organismal process, developmental process, and animal organ morphogenesis. Epigenome-wide conditional logistic regression analysis on the methionine dependency phenotype highlighted several epigenome signatures related to cell cycle and division and responses to IR and ultraviolet light. CONCLUSIONS: IRs generated a variation in the methylation level of a high number of CpG probes with shared biological pathways, including those associated with cell cycle and division, responses to IRs, sustained angiogenesis, tissue invasion, and metastasis. These results provide insight on shared adaptive mechanisms of the epigenome in cancerous cell lines in response to IR. Future experiments should focus on the tryptic association between IRs, the initiation of a radioresistance phenotype, and their interaction with methionine dependency as a hallmark of metabolic adaptation in cancer.


Assuntos
Adaptação Psicológica , Linhagem Celular Tumoral/efeitos da radiação , Metionina/efeitos adversos , Radiação Ionizante , Metilação de DNA/genética , Metilação de DNA/imunologia , Epigenômica/métodos , Epigenômica/estatística & dados numéricos , Humanos , Metionina/metabolismo
11.
Clin Cancer Res ; 27(15): 4353-4366, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34011558

RESUMO

PURPOSE: Combining radiotherapy (RT) with DNA damage response inhibitors may lead to increased tumor cell death through radiosensitization. DNA-dependent protein kinase (DNA-PK) plays an important role in DNA double-strand break repair via the nonhomologous end joining (NHEJ) pathway. We hypothesized that in addition to a radiosensitizing effect from the combination of RT with AZD7648, a potent and specific inhibitor of DNA-PK, combination therapy may also lead to modulation of an anticancer immune response. EXPERIMENTAL DESIGN: AZD7648 and RT efficacy, as monotherapy and in combination, was investigated in fully immunocompetent mice in MC38, CT26, and B16-F10 models. Immunologic consequences were analyzed by gene expression and flow-cytometric analysis. RESULTS: AZD7648, when delivered in combination with RT, induced complete tumor regressions in a significant proportion of mice. The antitumor efficacy was dependent on the presence of CD8+ T cells but independent of NK cells. Analysis of the tumor microenvironment revealed a reduction in T-cell PD-1 expression, increased NK-cell granzyme B expression, and elevated type I IFN signaling in mice treated with the combination when compared with RT treatment alone. Blocking of the type I IFN receptor in vivo also demonstrated a critical role for type I IFN in tumor growth control following combined therapy. Finally, this combination was able to generate tumor antigen-specific immunologic memory capable of suppressing tumor growth following rechallenge. CONCLUSIONS: Blocking the NHEJ DNA repair pathway with AZD7648 in combination with RT leads to durable immune-mediated tumor control.


Assuntos
Linhagem Celular Tumoral/efeitos da radiação , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Interferon Tipo I/efeitos dos fármacos , Neoplasias/radioterapia , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Piranos/farmacologia , Radiossensibilizantes/farmacologia , Triazóis/farmacologia , Animais , Camundongos
12.
Ann Agric Environ Med ; 28(1): 163-171, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33775083

RESUMO

INTRODUCTION: Currently, mobile phones and Wi-Fi are the most commonly used forms of telecommunication. The popularity of mobile telecommunications has made it necessary to investigate the problem more comprehensively and cautiously assess the possible risks, because never before in history has such a substantial proportion of the population been exposed to microwaves at comparably high levels. Some studies indicate that the high frequency electromagnetic radiation emitted by mobile phone and Wi-Fi connections can have a negative effect on human health, and can cause cancer. OBJECTIVE: The aim of the study was to investigate the influence of the radiofrquency electromagnetic field (RF-EMF) on the metaboloc activity and morphology of normal human cells (fibroblasts) and cancer cells (prostate cancer cells). MATERIAL AND METHODS: The cell cultures (human fibroblasts and prostate cancer cells) were exposed to RF-EMF at the frequency of 2.5 GHz for 24, 48 and 72h. To quantify changes in cell viability, the Cell Counting Kit - 8 was used. RESULTS: It was found that the RF electromagnetic field exposure caused a significant decrease in the viability of fibroblasts, and a significant increase in cancer cells. Morphological analysis did not show significant changes in both cell lines after exposure to RF-EMF. CONCLUSIONS: On the basis of the obtained results, the hypothesis can be formulated that a high frequency electromagnetic field can have harmful effects on human cells.


Assuntos
Linhagem Celular Tumoral/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Fibroblastos/efeitos da radiação , Ondas de Rádio/efeitos adversos , Linhagem Celular , Telefone Celular , Sobrevivência Celular/efeitos da radiação , Exposição Ambiental/efeitos adversos , Fibroblastos/citologia , Humanos
13.
Clin Epigenetics ; 13(1): 41, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632300

RESUMO

BACKGROUND: Concurrent thoracic radiation plus chemotherapy is the mainstay of first-line treatment for limited-stage small cell lung cancer (LS-SCLC). Despite initial high responsiveness to combined chemo- and radiotherapy, SCLC almost invariably relapses and develops resistance within one year, leading to poor prognosis in patients with LS-SCLC. Developing new chemical agents that increase ionizing radiation's cytotoxicity against SCLC is urgently needed. RESULTS: Dual histone deacetylase (HDAC) and PI3K inhibitor FK228 not only displayed potent anticancer activity, but also enhanced the therapeutic effects of radiotherapy in SCLC cells. Mechanistically, radioresistant SCLC cells exhibit a lower level of histone H3K9 acetylation and a higher expression level of the MRE11-RAD50-NBS1 (MRN) complex and show more efficient and redundant DNA damage repair capacities than radiosensitive SCLC cells. FK228 pretreatment resulted in marked induction of H3k9 acetylation, attenuated homologous recombination (HR) repair competency and impaired non-homologous end joining (NHEJ) repair efficacy, leading to the accumulation of radiation-induced DNA damage and radiosensitization. CONCLUSION: The study uncovered that FK228 sensitized human radioresistant SCLC cells to radiation mainly through induction of chromatin decondensation and suppression of DNA damage signaling and repair. Our study provides a rational basis for a further clinical study to test the potential of FK228 as a radiosensitizing agent to increase the radiation-induced tumor cell kill in LS-SCLC patients.


Assuntos
Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Depsipeptídeos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Carcinoma de Pequenas Células do Pulmão/genética , Apoptose/efeitos da radiação , Linhagem Celular Tumoral/efeitos da radiação , Terapia Combinada , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Depsipeptídeos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Recombinação Homóloga/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Estadiamento de Neoplasias/métodos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/radioterapia
14.
Hum Exp Toxicol ; 40(6): 977-993, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33305599

RESUMO

OBJECTIVE: To discuss the effects of Epstein-Barr virus (EBV)-encoded BamHI A rightward transcript (BART) microRNA (miR-BART6-5p) by targeting Dicer1 on biological properties and radiosensitivity of nasopharyngeal carcinoma (NPC). METHODS: NPC patients (n = 96) treated with radiotherapy were collected from Jan 2010 to Jan 2011. Real-time quantitative PCR (qRT-PCR) and western blot were carried out to measure the expression of miR-BART6-5p and Dicer1. Dual luciferase reporter gene assay verified that miR-BART6-5p targeted Dicer1. CCK8, wound-healing, Transwell and Annexin-FITC/PI were employed to evaluate the effects of Dicer1 mediated by miR-BART6-5p on biological characteristics of NPC cells. The radiosensitivity of miR-BART6-5p targeting Dicer1 was assessed in vitro and in vivo. RESULTS: Increased miR-BART6-5p and decreased Dicer1 were discovered in NPC patients, displaying a close association with T-stage, clinical stage, as well as Pre-DNA of NPC. While elevated Dicer1 and miR-BART6-5p down-regulation in NPC patients were found after effective radiotherapy. Both miR-BART6-5p and Dicer1 were prognostic factors of NPC. Down-regulation of miR-BART6-5p could enhance Dicer1 expression and inhibit NPC cell proliferation, invasion and migration with promoted apoptosis. Clone formation assay also showed miR-BART6-5p down-regulation reduced planting efficiency (PE), which further decreased with the increased dose of irradiation. Injection with miR-BART6-5p inhibitors in nude mice after 6-Gy irradiation contributed to the overexpression of Dicer1 and the inhibition of tumor growth. CONCLUSIONS: EBV-miR-BART6-5p may target Dicer1 to facilitate proliferation and metastasis of NPC cells and suppress apoptosis, thus being a new target for NPC therapy.


Assuntos
Linhagem Celular Tumoral/efeitos da radiação , RNA Helicases DEAD-box/genética , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Tolerância a Radiação/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , China , Feminino , Regulação Neoplásica da Expressão Gênica , Herpesvirus Humano 4/genética , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/fisiopatologia , Neoplasias Nasofaríngeas/fisiopatologia
15.
Gynecol Obstet Invest ; 86(1-2): 71-80, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33260174

RESUMO

OBJECTIVE: The objective of this study is to explore the role of miR-210 in the growth of ovarian cancer cells and the correlation with radiotherapy and to elucidate underlying molecular mechanisms. METHODS: Human ovarian cancer cell lines OVCAR3 and SKOV3 were cultured in vitro, and miR-210 over-expression and low-expression ovarian cancer cell models were established by cell transfection. MTT assay was used to detect the proliferation activity. Transwell was used to detect the migration and invasion abilities. Western blot measured the expression of proteins related to cell proliferation, migration, and invasion. The cells were treated with different doses of ionizing radiation, and then the cell proliferation activity was detected by MTT. The expression of apoptosis-related proteins was detected by Western blot. The Caspase-Glo® Kit was used to detect the activity of cellular caspase 3/7 enzymes. RESULTS: The proliferation, migration, and invasion abilities of miR-210 over-expression ovarian cancer cells were increased (p < 0.05), the expressions of PTEN and E-cadherin were decreased, and the expression of p-Protein kinase B (AKT), N-cadherin, Snail, and Vimentin were elevated. After ionizing radiation, the sensitivity of miR-210 over-expression cells to radiotherapy was decreased, the expression of apoptosis-related protein Bax was decreased, the expression of Bcl-2 was increased, and the activity of cellular caspase 3/7 enzyme was reduced (p < 0.05). CONCLUSION: miR-210 can promote the proliferation, migration, and invasion of ovarian cancer cells by activating the AKT signaling pathway and regulating the expression of Epithelial-mesenchymal transition-related proteins. miR-210 can reduce the sensitivity of ovarian cancer cells to radiotherapy by inhibiting apoptosis, which might serve as a potential target for the treatment of ovarian tumors.


Assuntos
Linhagem Celular Tumoral/efeitos da radiação , MicroRNAs/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/radioterapia , Apoptose , Caderinas/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Transdução de Sinais , Vimentina/metabolismo , Proteína X Associada a bcl-2
16.
J Biomed Sci ; 27(1): 90, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854690

RESUMO

BACKGROUND: The probability of local tumor control after radiotherapy (RT) remains still miserably poor in pediatric rhabdomyosarcoma (RMS). Thus, understanding the molecular mechanisms responsible of tumor relapse is essential to identify personalized RT-based strategies. Contrary to what has been done so far, a correct characterization of cellular radioresistance should be performed comparing radioresistant and radiosensitive cells with the same isogenic background. METHODS: Clinically relevant radioresistant (RR) embryonal (RD) and alveolar (RH30) RMS cell lines have been developed by irradiating them with clinical-like hypo-fractionated schedule. RMS-RR cells were compared to parental isogenic counterpart (RMS-PR) and studied following the radiobiological concept of the "6Rs", which stand for repair, redistribution, repopulation, reoxygenation, intrinsic radioresistance and radio-immuno-biology. RESULTS: RMS-RR cell lines, characterized by a more aggressive and in vitro pro-metastatic phenotype, showed a higher ability to i) detoxify from reactive oxygen species; ii) repair DNA damage by differently activating non-homologous end joining and homologous recombination pathways; iii) counteract RT-induced G2/M cell cycle arrest by re-starting growth and repopulating after irradiation; iv) express cancer stem-like profile. Bioinformatic analyses, performed to assess the role of 41 cytokines after RT exposure and their network interactions, suggested TGF-ß, MIF, CCL2, CXCL5, CXCL8 and CXCL12 as master regulators of cancer immune escape in RMS tumors. CONCLUSIONS: These results suggest that RMS could sustain intrinsic and acquire radioresistance by different mechanisms and indicate potential targets for future combined radiosensitizing strategies.


Assuntos
Linhagem Celular Tumoral/efeitos da radiação , Tolerância a Radiação , Rabdomiossarcoma Alveolar/radioterapia , Rabdomiossarcoma Embrionário/radioterapia , Humanos
17.
Urol Oncol ; 38(11): 849.e1-849.e9, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32665121

RESUMO

OBJECTIVE: N-myc downstream regulated gene 2 (NDRG2) is identified as a promising candidate tumor suppressor in several human malignancies including prostate cancer (PCa). Here, we investigated the effect of combined NDRG2 overexpression, x-ray radiation (RTX), and docetaxel (DTX) against viability and invasiveness properties of LNCaP cells. MATERIAL AND METHODS: A plasmid harboring NDRG2 gene under transcriptional control of prostate-specific enhancing sequence regulatory element was constructed to overexpress NDRG2 in PCa cell lines. The effects of NDRG2 overexpression in combination with RTX and DTX on viability, proliferation, and apoptosis of LNCaP cells were evaluated using MTT, colony formation, and annexin V flowcytometirc assays. Migration and invasion of NDRG2-overexpressed cells as well as expression of matrix metalloproteinses-2 (MMP2) and -9 (MMP9) were also assessed using transwell chamber assay and real-time PCR. RESULTS: The results of fluorescence microscopy and real-time PCR showed a high and specific overexpression of NDRG2 in LNCaP cells. Overexpression of NDRG2 significantly reduced cell viability and increased apoptosis of LNCaP cell. Migration, invasion, as well as the expression of MMP2 and MMP9, was decreased following NDRG2 overexpression. Combination of NDRG2 overexpression with RTX and DTX decreased the viability, invasion, and migration of LNCaP cells synergistically. CONCLUSION: These results indicate that a combination of NDRG2 overexpression with chemotherapy and radiotherapy can be considered for effective treatment of PCa.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Docetaxel/farmacologia , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Supressoras de Tumor/genética , Apoptose/genética , Linhagem Celular Tumoral/patologia , Sobrevivência Celular/genética , Humanos , Masculino , Invasividade Neoplásica/genética , Raios X
18.
J Radiat Res ; 61(3): 352-367, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32329510

RESUMO

Radiation-induced rescue effect (RIRE) in cells refers to the phenomenon where irradiated cells (IRCs) receive help from feedback signals produced by partnered bystander unirradiated cells (UIRCs) or from the conditioned medium (CM) that has previously conditioned the UIRCs. In the present work, we explored the role of poly (ADP-ribose) polymerase 1 (PARP1) regulation in RIRE and the positive feedback loop between PARP1 and nuclear factor-kappa-light-chain-enhancer of activated B cell (NF-κB) in RIRE using various cell lines, including HeLa, MCF7, CNE-2 and HCT116 cells. We first found that when the IRCs (irradiated with 2 Gy X-ray) were treated with CM, the relative mRNA expression levels of both tumor suppressor p53-binding protein 1 (53BP1) and PARP1, the co-localization factor between 53BP1 and γH2AX as well as the fluorescent intensity of PARP1 were reduced. We also found that IRCs treated with the PARP1 inhibitor, Olaparib (AZD2281) had a higher 53BP1 expression. These results illustrated that PARP1 was involved in RIRE transcriptionally and translationally. We further revealed that treatment of IRCs with CM together with Olaparib led to significantly lower mRNA expression levels and fluorescent intensities of NF-κB, while treatment of IRCs with CM together the NF-κB inhibitor BAY-11-7082 led to significantly lower mRNA expression levels as well as fluorescent intensities of PARP1. These results illustrated that PARP1 and NF-κB were involved in the positive feedback loop transcriptionally and translationally. Thus, the results supported the occurrence of a PARP1-NF-κB positive feedback loop in RIRE. The present work provided insights into potential exploitation of inhibition of PARP1 and/or the PARP1-NF-κB positive feedback loop in designing adjuncts to cancer radiotherapeutics.


Assuntos
Efeito Espectador , Linhagem Celular Tumoral/efeitos da radiação , NF-kappa B/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Meios de Cultivo Condicionados , Células HCT116 , Células HeLa , Histonas/metabolismo , Humanos , Células MCF-7 , Microscopia de Fluorescência , Nitrilas/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Transdução de Sinais , Sulfonas/farmacologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
19.
Theranostics ; 10(5): 2067-2094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32089735

RESUMO

Gap-enhanced Raman tags (GERTs) are emerging probes of surface-enhanced Raman scattering (SERS) spectroscopy that have found promising analytical, bioimaging, and theranostic applications. Because of their internal location, Raman reporter molecules are protected from unwanted external environments and particle aggregation and demonstrate superior SERS responses owing to the strongly enhanced electromagnetic fields in the gaps between metal core-shell structures. In this review, we discuss recent progress in the synthesis, simulation, and experimental studies of the optical properties and biomedical applications of novel spherically symmetrical and anisotropic GERTs fabricated with common plasmonic metals-gold (Au) and silver (Ag). Our discussion is focused on the design and synthetic strategies that ensure the optimal parameters and highest enhancement factors of GERTs for sensing and theranostics. In particular, we consider various core-shell structures with build-in nanogaps to explain why they would benefit the plasmonic GERTs as a superior SERS tag and how this would help future research in clinical analytics and therapeutics.


Assuntos
Processamento de Imagem Assistida por Computador/instrumentação , Neoplasias/terapia , Medicina de Precisão/instrumentação , Análise Espectral Raman/métodos , Animais , Anisotropia , Linhagem Celular Tumoral/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Ouro/química , Humanos , Nanopartículas Metálicas/química , Camundongos , Modelos Animais , Neoplasias/patologia , Fenômenos Ópticos , Terapia Fototérmica/métodos , Medicina de Precisão/métodos , Prata/química , Ressonância de Plasmônio de Superfície/instrumentação
20.
J Radiat Res ; 61(3): 376-387, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32100006

RESUMO

The malignant traits involved in tumor relapse, metastasis and the expansion of cancer stem-like cells are acquired via the epithelial-mesenchymal transition (EMT) process in the tumor microenvironment. In addition, the tumor microenvironment strongly supports the survival and growth of malignant tumor cells and further contributes to the reduced efficacy of anticancer therapy. Ionizing radiation can influence the tumor microenvironment, because it alters the biological functions of endothelial cells composing tumor vascular systems. However, to date, studies on the pivotal role of these endothelial cells in mediating the malignancy of cancer cells in the irradiated tumor microenvironment are rare. We previously evaluated the effects of irradiated endothelial cells on the malignant traits of human liver cancer cells and reported that endothelial cells irradiated with 2 Gy reinforce the malignant properties of these cancer cells. In this study, we investigated the signaling mechanisms underlying these events. We revealed that the increased expression level of IL-4 in endothelial cells irradiated with 2 Gy eventually led to enhanced migration and invasion of cancer cells and further expansion of cancer stem-like cells. In addition, this increased level of IL-4 activated the ERK and AKT signaling pathways to reinforce these events in cancer cells. Taken together, our data indicate that ionizing radiation may indirectly modulate malignancy by affecting endothelial cells in the tumor microenvironment. Importantly, these indirect effects on malignancy are thought to offer valuable clues or targets for overcoming the tumor recurrence after radiotherapy.


Assuntos
Células Endoteliais/efeitos da radiação , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucina-4/metabolismo , Neoplasias Hepáticas/radioterapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral/efeitos da radiação , Movimento Celular , Meios de Cultivo Condicionados , Transição Epitelial-Mesenquimal/efeitos da radiação , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Recidiva Local de Neoplasia , RNA Interferente Pequeno/metabolismo , Radiação Ionizante , Transdução de Sinais , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...